Online Unsupervised Learning of Hmm Parameters for Speaker Adaptation

نویسنده

  • Jen-Tzung CHIEN
چکیده

This paper presents an online unsupervised learning algorithm to flexibly adapt the speaker-independent (SI) hidden Markov models (HMM’s) to new speaker. We apply the quasi-Bayes (QB) estimate to incrementally obtain word sequence and adaptation parameters for adjusting HMM’s once a block of unlabeled data is enrolled. Accordingly, the nonstationary statistics of varying speakers can be successively traced according to the newest enrollment data. To improve the QB estimate, we employ the adaptive initial hyperparameters in the beginning session of online learning. These hyperparameters are estimated from a cluster of training speakers closest to the test speaker. Additionally, we develop a selection process to select reliable parameters from a list of candidates for unsupervised learning. A set of reliability assessment criteria is explored. From the experiments, we confirm the effectiveness of proposed method and find that using the adaptive initial hyperparameters in online learning and the multiple assessments in parameter selection can improve the speaker adaptation performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explorer Unsupervised cross - lingual speaker adaptation for HMM - based speech synthesis

In the EMIME project, we are developing a mobile device that performs personalized speech-to-speech translation such that a user’s spoken input in one language is used to produce spoken output in another language, while continuing to sound like the user’s voice. We integrate two techniques, unsupervised adaptation for HMM-based TTS using a wordbased large-vocabulary continuous speech recognizer...

متن کامل

Unsupervised learning of HMM topology for text-dependent speaker verification

Usually, text-dependent speaker verification can achieve better performance than text-independent system because of the constraint that the enrollment and testing utterance share the same phonetic content. However, the enrollment data for text-dependent system usually is very limited. Expectation Maximization(EM) training of HMM will suffer from noisy estimation because of limited enrollment. A...

متن کامل

Unsupervised speaker adaptation based on sufficient HMM statistics of selected speakers

This paper describes an efficient method for unsupervised speaker adaptation. This method is based on (1) selecting a subset of speakers who are acoustically close to a test speaker, and (2) calculating adapted model parameters according to the previously stored sufficient HMM statistics of the selected speakers’ data. In this method, only a few unsupervised test speaker’s data are required for...

متن کامل

Two-pass decision tree construction for unsupervised adaptation of HMM-based synthesis models

Hidden Markov model (HMM) -based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervi...

متن کامل

Online Bayesian tree-structured transformation of HMMs with optimal model selection for speaker adaptation

This paper presents a new recursive Bayesian learning approach for transformation parameter estimation in speaker adaptation. Our goal is to incrementally transform or adapt a set of hidden Markov model (HMM) parameters for a new speaker and gain large performance improvement from a small amount of adaptation data. By constructing a clustering tree of HMM Gaussian mixture components, the linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000